

Palacký University Olomouc

Droplet Microscope IYPT 2024

Tomáš Opatrný

Department of Optics Faculty of Science Palacký University Olomouc

Prague, October 21, 2023

The Task

By looking through a single water droplet placed on a glass surface, one can observe that the droplet acts as an imaging system. Investigate the magnification and resolution of such a lens.

Outline

- Basic laws of optics
- Imaging, magnification, resolution
- Optical aberration
- Lab and SW possibilities at the Optics Department
- Some useful published work
- Some hints to explore
- Some hints to win the tournament
- Summary

https://en.wikipedia.org/wiki/Lens

Lensmaker's equation

$$\frac{1}{f} = (n-1) \left[\frac{1}{R_1} - \frac{1}{R_2} + \frac{(n-1)d}{nR_1R_2} \right]$$

If $R_2 = \infty$ then

$$f = \frac{R}{n-1}$$

for water $n-1 \approx 1/3$, therefore

 $f \approx 3R$

(1)

https://en.wikipedia.org/wiki/Lens

Lens Imaging

Lens Imaging

When the object is placed at the focal point, the magnification goes to infinity!

Can the magnification be arbitrarily large???

When the object is placed at the focal point, the magnification goes to infinity!

Can the magnification be arbitrarily large???

In principle, yes, but it does not make sense to magnify beyond the resolution.

The smallest resolvable detail should be inside the area of view.

When the object is placed at the focal point, the magnification goes to infinity!

Can the magnification be arbitrarily large???

In principle, yes, but it does not make sense to magnify beyond the resolution.

The smallest resolvable detail should be inside the area of view.

So, what influences the resolution?

Resolution

- 9 groups, each consisting of 6 elements, i.e., 54 target elements
- Each element three bars which form a minimal Ronchi ruling
- logarithmic steps in spatial frequency from 0.250 to 912.3 line pairs per mm

https://en.wikipedia.org/wiki/1951_USAF_resolution_test_chart#

The assumption that a point of an object is projected to a point of the image is just an **approximation**.

In reality, various aberrations play a role:

- Spherical aberration
- Coma
- Astigmatism
- Field curvature
- Image distortion
- Chromatic aberration

Moreover, there is also the **diffraction limit** due to the wave nature of the light.

Light rays that strike a spherical surface off-centre are refracted or reflected more or less than those that strike close to the centre.

https://en.wikipedia.org/wiki/Spherical_aberration

Off-axis point sources are distorted, appearing to have a tail (coma) like a comet.

https://en.wikipedia.org/wiki/Coma_(optics)

Rays that propagate in two perpendicular planes have different foci.

https://en.wikipedia.org/wiki/Astigmatism_(optical_systems)

Flat object normal to the optical axis cannot be brought into focus on a flat image plane.

https://en.wikipedia.org/wiki/Petzval_field_curvature

Magnification depends on the distance from the opticsl axis. (here: "barrel", "pincushion", "mustache")

https://en.wikipedia.org/wiki/Distortion_(optics)

Index of refraction depends on the wavelength.

https://en.wikipedia.org/wiki/Chromatic_aberration

Diffraction limit, Airy disc

The resolution is limited by the wavelength:

$$d = \frac{\lambda}{2n\sin\theta} = \frac{\lambda}{2 \text{ NA}}$$

https://en.wikipedia.org/wiki/Airy_disk

Lab Testing

Lab Testing

Lab Testing

Software tools

Available at the Optics Department

- OSLO (Optical Software for Layout and Optimization)
- VirtualLab

Software tools

Available at the Optics Department

- ray-tracing of the system
- computing optical parameters of the system
- analysis of imaging power and optimization

Conformal CD pickap NA.0.3 [swedilen] - OSIO Premium				
, Lere Erstudie Cytimize Melanos Source Noti Window Help 10 (Nucl 19 10) (Nucl 19 10) via an UN ac				
I U W M M M M M M M M M M M M M M M M M M				
The second se		- Annahar		(alata)
V			- 9	ATTS: MM
× 0.4	- <u> </u>	0.566	1 0	18:08.0
Con Potus Manufesath Rield Baiata Manishica Deau De Course M	ates 1			
Tent: Tent Torn 1 of 1	o cea			
Tet been radius 0.400000 Teace beight 2.000000 Erimany wavin 0.7	40000			
SEP RADIUS THICKNESS APERTURE RADIUS GLASS SPEC	TAL			
CBJ 0.000000 50.000000 25.398979 AIR				
AST 1.200000 1.200000 1.400000 AK WATER C :	8			
2 0.000000 0.000000 0.766996 S AIR				
IMS 0.000000 3.034087 2.000000 S				
	*	<u></u>		
The second se	088	RWT 1 - Ray Intercept Convex Analysis 1		088
In See Re Ape War No Air Ng Of The See Ref See Set Ad Nor One In Ref Set (4) top dox St 20				
Note: This optical system contains special surface data.		Arrand Street	IN STATUL ART. (N)	FERL SHIT (N)
Calculations based on a paraxial raytrace may be invalid.				
*FIFTH-CRORE ABERRATIONS				NAMES AND ADDRESS OF TAXABLE
SRF SA5 CNA5 AST5 PTZ5 DIS5 SA7		DU NUPL - T. Syn		
SUN -0.001170 -0.002571 -0.005027 0.008578 0.002154 -9.9712e-0 Note: This optical motor contains special surface data	5	1000	and an intervention	
Calculations based on a paraxial raytrace may be invalid.			N 245	-
PARANIAL CONSTANTS Effective focal length: 2 649771 Lateral magnification: -0.0797	12	40		
Numerical aperture: 0.101593 Gaussian image height: 2.0000	00	UNING CO.	A (m)	
Morking F-number: 4.921615 Petzval radius: -4.8497	71			
Legrange invariant: -0.203192 Note: This optical system contains special surface data.	1		units on	
Calculations based on a paraxial raytrace may be invalid.		723.0 - 0.4ee Sett W. C. 12 (71 - 5.4bee	And Black and Mar	06.0
		19461391 + A 790 Jan	NAL INVERTING	0.0 %

Software tools

Available at the Optics Department

VirtualLab FUSION

- simulation of wave and vector characteristics of the optical field
- physical simulations
- ray-tracing of the system

SPECIAL FEATURE: PRACTICAL PHYSICS

www.iop.org/Journals/pe

Water droplet lens microscope and microphotographs

H H Myint¹, A M Marpaung², H Kurniawan², H Hattori³ and K Kagawa³

¹ No 2 Basic Education High School, Dagon Township, Yangon, Myanmar ² Applied Spectroscopy Laboratory, Graduate Program in Opto Electrotechniques and Laser Applications, Faculty of Engineering, The University of Indonesia, 4 Salemba Raya, Jakarta 10430, Indonesia ³ Department of Physics, Faculty of Education and Regional Studies, The University of Fokui, Fukui 910, Japan

E-mail: kagawa@edu00.f-edu.fukui-u.ac.jp

H. H. Myint et al., Phys. Educ. 36, 2, 97-101 (2001)

H. H. Myint et al., Phys. Educ. 36, 2, 97-101 (2001)

H. H. Myint et al., Phys. Educ. 36, 2, 97-101 (2001)

Learning the lens equation using water and smartphones/tablets

J. Freeland et al., The Physics Teacher 58, 360, May 2020

Other useful resources

- Preparation to the Young Physicists' Tournaments' 2024 Ilya Martchenko, Foundation for Youth Tournaments
- G. Planinsic. Water-drop projector. Phys. Teach. 39, 18-21 (2001), https://users.fmf.uni-lj.si/planinsic/articles/planin2.pdf
- J. Walker. A drop of water becomes a gateway into the world of catastrophe optics. Sci. Am. 261, 120D-123 (1989)
- N. A. Szydlowski, H. Jing, M. Alqashmi, and Y. S. Hu. Cell phone digital microscopy using an oil droplet. Biomed. Optics Expr. 11, 5, 2328-2338 (2020)
- One drop of water turns an iPhone into a Microscope Day of Curiosity 17 (youtube, Jeremy Pedersen, 30.03.2022), https://youtu.be/aYQsxB2p4KI
- Make a FREE Microscope! (DIY With a Water Drop Lens) (youtube, Squint Science, 28.07.2020), https://youtu.be/cnKCbW75dlk

Possible further ideas

What can one explore?

- Find the shape of the drop and verify the lens equation. What is the best way to determine the dimensions and shape of the drop?
- Find the ways to control the size and shape of the drop. Precise pipette? Controlling the surface tension? Could anything be changed by letting the drop "hang from the ceiling" rather than "sit on the bottom"?
- Does the asymmetry of the lens play a role? Is it better to place the object to the flat or convex side of the lens?
- Can one manipulate the index of refraction? Can that improve the performance of your microscope?
- Which aberration limits the resolution dominantly? Can one find a way to mitigate it?

Some hints to win

- Do a neat experiment, have all relevant parameters under control, collect data and process them correctly. Estimate the precision of your results.
- Check how the measured results agree with the theory, explain any deviations.
- Try to reproduce previously published results, comment on any differences.
- Be creative and come with new ideas that were not published previously (it's hard, but try).
- Try to collaborate with institutions with good optics labs. How do your home-made measuremens relate to those done with professional equipment?
- Bring your device to the tournament and show it to the jury. (I typically give an additional point to those who bring a real stuff.)
- Make nice photographs of some interesting objects.
- Cite properly used sources.

Summary

- Basic laws of optics (Snell, Lensmaker's Equation, Lens Equation)
- Imaging, magnification, resolution
- Optical aberration
- Lab and SW possibilities at the Optics Department
- Some useful published work
- Some hints to explore
- Some hints to win the tournament

Conclusion

Motto:

"Kein Versuch ist so dumm, dass man ihn nicht probieren sollte." (No experiment is so dumb, that it should not be tried.)

(I. Estermann [Am. J. Phys. 43, 661 (1975)] qoting W. Gerlach 1920, quoting E. Meyer)

THANK YOU!